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Abstract. The goal of Specular Neutron and X-ray Reflectometry is to infer
materials Scattering Length Density (SLD) profiles from experimental reflectivity
curves. This paper focuses on investigating an original approach to the ill-
posed non-invertible problem which involves the use of Artificial Neural Networks
(ANN). In particular, the numerical experiments described here deal with large
data sets of simulated reflectivity curves and SLD profiles, and aim to assess the
applicability of Data Science and Machine Learning technology to the analysis
of data generated at large scale facilities. It is demonstrated that, under
certain circumstances, properly trained Deep Neural Networks are capable of
correctly recovering plausible SLD profiles when presented with never-seen-before
simulated reflectivity curves. When the necessary conditions are met, a proper
implementation of the described approach would offer two main advantages over
traditional fitting methods when dealing with real experiments, namely, 1. no
prior assumptions about the sample physical model are required and 2. the times-
to-solution are shrank by orders of magnitude, enabling faster batch analyses for
large datasets.
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Reflectivity profile inversion by ANNs
1. Introduction

Neutron and X-ray Specular Reflectometry are estab-
lished experimental techniques whose aim is to investi-
gate interfacial structures at the sub-nanometer scale
through the measurement and analysis of reflectivity
curves [I1 2] [3].

In a typical specular reflectometry experiment,
a collimated Neutron or X-ray beam of wavelength
A impinges on the surface of a flat sample at an
incident angle . The incident angle is varied and the
specular reflectivity is measured as the ratio between
the reflected and the incident beam intensities, R(6) =
Ir(0)/10(6).

Theoretically, in the absence of significant non-
specular scattering from in-plane variations of the SLD,
neutron specular reflectivity is accurately described by
a one-dimensional Schrodinger wave equatiorff]
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where 1 is the wave function, p is the SLD profile of
a given sample, kg, is the wave vector z component
and z is the depth inside the sample, perpendicular to
the sample interfaces (For more details see e.g. [4] and
references therein).

In terms of the solution to equation [I} the
amplitude of the reflected wave can be represented by
the integtral
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where 7(@Q) is the complex-valued reflection amplitude
as function of the wave vector transfer perpendicular
to the surface, Q = 2ko, = 4msin(f)/\, and L is the
thickness of the SLD profile. However, the reflection
amplitude is not accessible to measurements, but
only the reflectivity which, in terms of the reflection
amplitude, reads R(Q) = r*r.

1.1. The phase problem and fitting

The measured reflectivity, R(Q), does not carry any
information regarding the phase, making the inference
of an SLD profile from a reflectivity curve a non-
invertible inverse problem: at a theoretical level, there
are families of SLD profiles which produce exactly the
same reflectivity curve. In particular, this applies
to any anti-periodic SLD profile that is reflected at
the mid point (See Figure [I). To an experimenter
measuring reflectivities, R(Q) = r*r, both SLD profiles
are indistinguishable.

i Throughout this work, derivations and discussions focus
mainly on neutron reflectometry, however, the same derivations
and approach apply to the X-ray case with little or no change.
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Figure 1. By applying a reflection transformation to an
anti-periodic SLD profile, the exact same reflectivity curve is
reproduced.

The degeneracy causing different SLD profiles to
produce identical reflectivity curves is known as the
phase problem, and is accentuated by the truncation
of the reflectivity data at a maximum value of @} and
the statistical uncertainty associated with noisy data
points (e.g. See [3]).

Typically, the data obtained from Reflectometry
experiments is analyzed in terms of physical models,
trusting their ability to reproduce measured experi-
mental reflectivity curves. Using specialized software
(e.g.[6l[7]), an iterative process of parameter optimiza-
tion is thus established in which, at each iteration, 1.
certain parameters of the physical model are set, 2.
theoretical reflectivity curves are calculated and 3. a
comparison is made between the theoretical and exper-
imental reflectivity curves. The latter comparison is
quantified by a Figure of Merit (FOM) and the goal of
the iterative process is reached when the FOM reaches
its minimum value, namely, when the experimental and
the theoretical reflectivity curves are as close as allowed
by the physical model and the experimental resolution.
Such an iterative fitting process is by far immediate, re-
quiring experimenters to try out several FOMs, several
minimization algorithms, several sets of model param-
eters and even several physical models.

In recent years, BornAgain [6] —a well established
code for simulating and fitting neutron and X-
ray grazing-incidence small-angle scattering (GISAS)
data, has started to support fitting and simulation
capabilities for reflectometry data as well. The present
work aims at exploring the possibilities that Machine
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Learning has to offer towards the development of
reflectivity data-driven software.

2. The expressive power of artificial neural
networks

Deep neural networks can be thought of as composi-
tions of multiple simple functions (called layers) that
can approximate rather complicated functions. In fact,
the celebrated universal approximation theorem states
that depth-2 networks with suitable activation func-
tions can approximate any continuous function on a
compact domain to any desired accuracy [8], 9] 10} [TT].
However, the size of such a neural network could be
exponential in the input dimension, which means that
the depth-2 network may have a very large width
[12, 13} M4]. In fact, part of the recent renaissance
in Artificial Neural Networks (ANN), lies not on en-
abling wider networks to be trained, but on the em-
pirical observation that deep neural networks tend to
achieve greater expressive power per parameter than
their shallow counterparts.

It has been shown that any Lebesgue-integrable
function from RY — R can be approximated by a
fully-connected ReLU deep neural network of width
N +4 to arbitrary accuracy with respect to L1 distance
and, except for a negligible set, all functions from R
to R cannot be approximated by any ReLU network
whose width is no more than N [I5]. [16] show
that any continuous function f : [0,1]%n — Rdout
can be approximated by a net of width d;n, + dout,
obtaining also quantitative depth estimates for such an
approximation in terms of the modulus of continuity
of f. At the same time, they claim that there are no
conclusive results regarding the depth such a network
should have, and, even in the case that a precise
ANN architecture to achieve a given precision can be
defined, nothing can be said regarding the success of
the training process.

In contrast to these apparent theoretical draw-
backs, one of the first architectures that is taught when
studying ANNs —a single hidden layer of width 128, is
able to classify 28 x 28 pixel images (i.e. points in
R74) into 10 discrete categories, passing in the pro-
cess through a mapping into the real unit interval (e.g.
TensorFlow tutorials [I7]). These achievements, in ap-
parent contradiction with the theoretical results de-
scribed above, are possible because of the fact that the
images under classification do not sample the whole
R4 but are drawn from only a very limited subspace
of it. In fact, when the trained network is presented
with images that do not belong to that subspace, the
ANN fails —it may even classify apparently random
noise as some of the 10 digits with almost 100% cer-
tainty.
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In the present work, focus is made on training
simple and small ANNSs targeted to specialized kinds of
SLD profiles, in contrast to larger and general-purpose
neural networks, as ANN attempts to learn a general
pseudo-inverse function, for the time being, are almost
certainly doomed to fail.

3. Related work

Non invertible inverse problems are not unique
to X-ray and Neutron reflectometry, and several
other scientific communities have already started to
investigate the usefulness of Artificial Neural Networks
for tackling them, showing astonishing performance
for applications like low-dose computed tomography
or various sparse data problems. While there are
few theoretical results, some well-posedness results
and quantitative error estimates have been found
for some problems [I8]. For instance, in Electrical
Impedance Tomography (EIT), which represents the
typical nonlinear ill-posed problem, the electrical
properties of tissues are determined by injecting a
small amount of current and measuring the resulting
electric potential, which must be transformed into a
tomographic image by some reconstructing algorithm.
Many artificial intelligence approaches to tackle EIT
have been taken in the past few years (e.g. [19] and
references therein) with outstanding results.

In the realm of X-ray reflectivity, a recent work
shows that properly trained ANNs with simple fully
connected architectures can be used to characterize
thin film properties (thickness, roughness and density)
from XRR data within milliseconds and minimal a
priori knowledge. Their results differ from traditional
least mean squares fitting by less than 20% [20]. Such
an approach could benefit the study of the growth
behavior of thin films.

4. Data simulation, preprocessing, network
architecture, training and implementation.

4.1. Scaling of the problem

The only physical quantities involved in the calculation
of a reflectivity curve, assuming a perfect instrument
able to measure up to @ — oo and an SLD profile
extending up to z — oo, are the wave transfer
vector @ and the SLD profile p(z). These quantities
can be further reduced by using dimensional analysis.
In fact, the number of dimensionless groups that
define the problem, which equals the total number of
physical quantities (@ and p) minus the fundamental
dimensions (length), is only one ( = 2 — 1). By
choosing an arbitrary SLD scale pg and defining the
dimensionless parameter p = p/pg, equation can
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be re-casted in the following form:

47
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where £ = z,/po, 1 = koz/\/po, and p(§) = p(z)/po

are the dimensionless depth, wave vector and SLD
profile respectively. Thus, to solve for a different SLD
scale, p., it is enough to solve for r¢(Q) and rescale

afterwards by /p«/po, i.e.

r(Q) = Z— x 70(Q). (4)

In the following, the SLD scale of the problem is chosen
to be that of the substrate, pg = psups, 1-€-, Psups = 1.

4.2. Data simulation

The phase problem implies that a single input (e.g.
a reflectivity curve) may be consistent with two
or more different outputs (e.g. SLD profiles). If
one were to train an ANN to find a pseudo-inverse
transformation, using data containing different output
targets corresponding to the same input (different
branches), the training process would not be successful,
as different branches would cause the weights of the
ANN to drift in inconsistent directions. In order
to avoid such a situation, it must be ensured that
either x1.- the solution space has no branches, or *2.-
the training targets lie all in the same branch of the
solution space. For the last scenario, it must also
be kept in mind that ANNs trained in such a way
will only be useful as long as the expected solutions
are consistent with the branch to which the training
targets belong. To fulfill %1, a set of artificial SLD
profiles is generated which offer a 1-1 correspondence
to their associated reflecticity curves —SLD profiles
odd with respect to the middle of the depth. To try
to fulfill ¥2 to some extent, two sets of SLD profiles
are generated, each set corresponding to a physically
relevant typology of samples, namely, single films and
lamellar structures.

All simulated SLD profiles used as training targets
in this work have an overall thickness I = 5124,
and are sampled by 512 equally spaced points within
the semi-closed interval z = (0, L], between two semi-
infinite fronting and backing mediums of constant SLD,
P—oo =0 and pio = 1079A~2 respectively. Each SLD
profile was thus modeled as a Multilayer composed
of 512 slices, 1A thick each, with no interfacial
roughness. In this way, smooth SLD profiles were
mimicked by quasi-continuous small variations of the
SLD between contiguous layers throughout the whole
interfacial structure. Such SLD profiles are then used
to simulate the corresponding reflectivity curves for
which the wave vector transfer is limited to an interval
0 < Q < Quax = 0.25, sampled by 129 equally spaced
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points. Imperfections in the reflectivity curves are
only characterized by a background of 107¢ and a Q-
resolution of 5%.

In order to bring the so-called features (in the
case at hand, the reflectivity curves) into a small
dynamic range, the average reflectivity curve needs to
be subtracted from all reflectivity curves in the set.
Thus, the new set of curves is a zero-mean set of curves.
After that, each of the resulting zero-mean curves
is rescaled by dividing it by the standard-deviation
curve. Finally, the obtained zero-mean, unit-standard-
deviation set of curves is ready to be used for training.
In the following, we refer to this set of curves as the
training features. In contrast to the reflectivity curves,
the SLD profiles, i.e. the training targets, are left
unchanged.

Figure [2| gives an overview of the three different
data sets used and their preprocessing, and a more
detailed discussion of each is carried out in section [l

4.3. Network architecture

The network architecture is given to some extent
by the problem constraints: The number of input
neurons must be the same as the input reflectivity
curve lengths, which is chosen to be 129. The number
of output neurons must be the same as the expected
SLD profile resolution points, which are 512. To
allow for enough expressive power of the network, four
hidden layers are created with 2048 neurons —a size
four times larger than that of the output layer and
16 times larger than that of the input neurons. The
network is kept relatively shallow to allow fast trainings
and computation of SLD profiles. To reproduce non-
linearities, ReLU functions are used after each hidden
layer, except the one before the output layer. In order
to prevent overfitting, a single dropout layer with a
rate of 0.5 is added as a regularizer before the output
layer. The architecture of the ANNs, as displayed by
the keras method Model.Summary () is the following:
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Figure 2. In the top row, three different families of SLD profiles are shown: Odd functions, single films and lamellar structures;
the middle row shows the simulated reflectivity curves obtained from the SLDs in the top panels; The bottom row show the
rescaling of the reflectivity curves which have zero mean and unit standard deviation. A single random curve is highlighted in red
to give a qualitative impression of the features defining each family of curves.

Model: "sequential"

Layer (type) Output Shape Param #
reshape (Reshape) (None, 129) 0

dense (Dense) (None, 2048) 266240
dense_1 (Dense) (None, 2048) 4196352
dense_2 (Dense) (None, 2048) 4196352
dropout (Dropout) (None, 2048) 0

dense_3 (Dense) (None, 512) 1049088

Total params: 9,708,032
Trainable params: 9,708,032
Non-trainable params: O

4.4. Training

At training time, the optimizer of choice is the
Adaptive Moment Estimation algorithm (ADAM
[21]), together with a mean-squared-error (MSE) loss
function. All models are set to train for 500 epochs and
an early stopping callback with a patience parameter
value of 10 epochs is also provided. This callback
prevents overfitting by stopping the ANNs training
whenever the error in the validation set does not
decrease anymore through the epochs.

5. Results

Three different datasets have been used to train
three different neural networks: i) SLD profiles
possessing odd symmetry, ii) single films and iii)
lamellar structures. Thus, while all of the networks
are architecturally equal, their learned weights are
different. The trained ANNs were tested by feeding
them B5K never-seen-before reflectivity curves and
calculating the Mean Absolute Error,

- 1 N
MAE; = MAE(p;, p;) = Nrps ijk = Pjk> (5)
k

between the ANN predicted SLD profile and the SLD
target profile.

5.1. Odd SLD profiles

If an SLD profile possesses the symmetry p(z+ L/2) =
—p(z) + const, z € [0, L/2], the same reflectivity curve
it produces is recovered by reflecting it at its mid-
point (c.f. Section . Thus, by defining a dataset
composed only by odd SLD profiles, it is ensured that
there is a one to one correspondence between an SLD
profile and its associated reflectivity curve. Figure
shows five test SLD profiles recovered after a neural
network is trained using such a dataset. The overall
Mean Absolute Error for the test set, composed of 5K
samples, lies around 0.35.
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Figure 3. By training an ANN using a set of 100K random odd SLD profiles, the phase problem is not present and there is a one
to one correspondence between an SLD profile and its associated reflectivity curve. Five test reflectivity curves (black lines; bottom
panels) were shown to the trained network for the first time; from those curves, the network guesses the SLD profiles that produce
them (blue dashed lines; top panels). In the figure, the Mean Absolute Errors (MAE) with respect to the true SLD profiles (black
lines; top panels) are also shown. Additional reflectivity curves are shown (red dashed lines, bottom panels), generated from the

SLD profiles predicted by the ANN.

5.2. Training on films with positive SLD

The simplest family of SLD profiles is that of single
layers on top of a substrate. In this family, each
SLD profile is made up of only three regions: The
superstrate, psyp = 0 extending from z = —oo to
z = A_; the substrate, psypy = 1 extending from
z =512 — A4 to z = o0; and a film of constant SLD
py extending from z = A_ to 2 =512 - A,. A,/
are buffer regions defined to smoothen the transition
between the SLD of the film and that of the super-
and substrates. Ay = 50 is fixed for all SLD profiles of
this data set, while A_ € [50, A} ) is randomly chosen
for each generated profile and effectively defines the
thickness of the film. The SLD of each film is randomly
chosen py € [0, 20].

Figure 4] shows five test SLD profiles recovered
after a neural network is trained using such a dataset.
The overall Mean Absolute Error for the test set,
composed of 5K samples, lies around 0.08.

5.8. Training on Lamellar structures

The family of SLD profiles for this data set is defined
by lamellar structures, each one having n, equally
spaced regions of alternating SLDs between p; and
p2. Both SLD values were chosen randomly between
-10 and 10, and the number of regions was randomly
chosen between 1 and 64, extending from z = A to
z =512—A, where A = 50 defines a buffer to smoothen
the transition between the lamellar sample and its
surroundings. The obtained profiles were smoothened
using a Gaussian filter of a width randomly chosen

between 0 and 10.

Figure [] shows five test SLD profiles recovered
after a neural network is trained using such a dataset.
The overall Mean Absolute Error for the test set,
composed of 5K samples, lies around 0.98.

The SLD profiles predicted by the ANN are
not always consistent with the target SLD profiles.
However, when calculating the reflectivity curves
produced by such predicted profiles, the curve obtained
is quite similar to the original curve presented to the
ANN. For this family of SLD profiles, the trained
network is a good example of a pseudo-inverse that,
due to the degeneracy of the problem, is recovering a
plausible solution but not necessarily the correct one.

6. Discussion

The time required to generate each of the training data
sets and to train each of the ANNs is rather short:
around a couple of hours for data generation and a
similar time for ANN training (provided a GPU is
available). For unfortunate cases in which the data set
is not suited for ANN training (because of the phase
problem, for example), the overfitting regime may be
reached rather soon and the training stops even in
less than 30 minutes. The trained ANNs require only
around 100 MB of space and the training data is at
least around 500 MB large. Once trained, the ANNs
are able to recover plausible SLD profiles from 5K re-
flectivity curves in around 0.5 sec. What these metrics
tell, is that the ANNs are abstracting in an efficient
way the information contained in the training data.
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Figure 4. Single films are simple SLD profiles for which the trained network is able to correctly predict the associated SLD profiles.
Five test reflectivity curves (black lines; bottom panels) were shown to the trained network for the first time; from those curves,
the network guesses the SLD profiles that produce them (blue dashed lines; top panels). In the figure, the Mean Absolute Errors
(MAE) with respect to the true SLD profiles (black lines; top panels) are also shown. Additional reflectivity curves are shown (red

dashed lines, bottom panels), calculated from the SLD profiles predicted by the ANN.
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Figure 5. In the case of periodic lamellar SLD profiles, the phase problem is very present: even if most of the predictions recover to
a close approximation the original reflectivity curves, the predicted SLD profiles differ from the actual targets. Five test reflectivity
curves (black lines; bottom panels) were shown to the trained network for the first time; from those curves, the network guesses the
SLD profiles that produce them (blue dashed lines; top panels). In the figure, the Mean Absolute Errors (MAE) with respect to
the true SLD profiles (black lines; top panels) are also shown. Additional reflectivity curves are shown (red dashed lines, bottom

panels), calculated from the SLD profiles predicted by the ANN.

A good question to ask now is whether the ANNs
are actually learning the transformations or are only
memorizing the associations between particular SLD
profiles and reflectivity curves. While the evolution of
the metrics during the training and the performance on
the test set suggest that actual learning is taking place
(See[Appendix A.2)), it must be stressed that the ANNs
are certainly not learning a full general transformation,
but are rather optimized for interpolating within the
family of SLD profiles for which they are trained. Thus,
in order to take advantage of the proposed approach in

real experiments, the simulated training data should
incorporate the instrument specifications with as much
detail as possible. Additionally, in order to train an
ANN robust against noise, for each target SLD profile,
several noisy reflectivity curves with varying levels
of noise should be simulated, effectively allowing the
network to give higher priority to data points lying at
lower @ values.

Due to the quick response of the trained ANNs,
they could be incorporated in a data pipeline able to
potentially provide preliminary analyses of real time
phenomena like the swelling or drying of thin films
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(See also [20]), or used in large batch analysis of huge
data sets coming from large facilities. In fact, the time
required for an ANN to invert 10K reflectivity curves
is only around one second. However, as seen in Section
[6.3] interpreting reflectivity curves in such a way, may
offer plausible SLD profiles that nevertheless do not
correspond to the actual sample under the beam, thus,
a careful examination at a later stage will be always
required and, more likely than not, the ANN-inferred
SLD profiles should be instead used as starting models
to feed traditional fitting methods.

The ANNs described in this work are certainly not
useful resources for interpreting real reflectivity curves
in terms of SLD profiles. In order to bring the proposed
approach to the arena of real experiments, additional
information about the instrument resolution, the
actual @ range and some information about the
sample would also be needed. However, the numerical
experiments carried out here, show that the short
training times and the small space required, could
make it practical to train several ANNs with richer
architectures, specialized in different instruments and
selected families of samples. The results presented in
this work should be taken as a baseline with which
to compare future developments aimed at tackling the
analysis of data coming from real experiments.
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Appendix A. Appendix

Appendiz A.1. Training on random SLD profiles

Throughout this work, we have argued that the ANN
training process is sure to fail in a majority of cases, as
the solution space usually has branches and many of
the training targets may lie in inconsistent branches of
the solution space, causing the weights of the ANN to
drift in inconsistent directions during the training. To
prove this point, an additional ANN was trained using
a set of SLD profiles composed of a random number
of layers of random thicknesses and random heights.
Figure shows five test SLD profiles recovered after
a neural network is trained using such a dataset. None
of the predicted SLD profiles is consistent with the
targets and none of the recovered reflectivity curves
is consistent with the input data. The Mean Absolute
Error for the test set, composed of 5K samples, lies
around 2.4.

Appendiz A.2. Metrics Evolution

After the ANN architecture is defined, the ANN is
trained using the training set to modify its weights
and the validation set to asses the performance of the
ANN; after each epoch, the MAE is computed. Its
evolution is shown in Figure which shows that,
except for the family of random SLD profiles, the MAE
continuously decreases throughout the epochs for both
training and validation sets, and training stops at the
moment at which the validation error seems not to
decrease further. In contrast, for the family of random
SLD profiles, overfitting starts already at epoch 10.
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Figure A1l. The training of the ANN fails when using a set of 100K random SLD profiles of between 1 and 16 slabs of random
thicknesses and heights between -10 and 10. Five test reflectivity curves (black lines; bottom panels) were shown to the trained
network for the first time; from those curves, the network guesses the SLD profiles that produce them (blue dashed lines; top
panels). In the figure, the Mean Absolute Errors (MAE) with respect to the true SLD profiles (black lines; top panels) are also
shown. Additional reflectivity curves are shown (red dashed lines, bottom panels), calculated from the SLD profiles predicted by
the ANN.

One peculiarity that is observed in the three main data
sets studied, is that the validation error is smaller than
the training error. This counter-intuitive behavior
comes from the dropout layer which, being activated
only at training time, causes poorer performance on
the training set —a condition that is rather perceived
as better validation performance. To test this oddity,
the dropout layer was removed while training an ANN
over the single films data set and the expected relation
between training and validation errors was recovered:
MAEaiia > MAE¢ain (See Figure .
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Figure A2. The MAE evolution throughout the epochs as the training proceeds is shown for the different families of SLD profiles
studied in this work: Odd functions (top left panel), single films (top right panel), lamellar structures (bottom left panel) and
random SLD profiles (bottom right panel). See the text for discussion.
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Figure A3.

For the case of single films SLD profiles, the

MAE evolution throughout the epochs as the training proceeds
is shown for a special ANN in which the dropout layer is not

present. See the text for discussion.
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